امروز: یکشنبه 25 آذر 1397
دسته بندی محصولات
بخش همکاران
بلوک کد اختصاصی

پاورپوینت تکنیک های پیشرفته شمارش

پاورپوینت تکنیک های پیشرفته شمارش دسته: پاورپوینت
بازدید: 1 بار
فرمت فایل: ppt
حجم فایل: 386 کیلوبایت
تعداد صفحات فایل: 25

دانلود پاورپوینت تکنیک های پیشرفته شمارش بررسی تکنیک های پیشرفته شمارش پاورپوینت جامع و کامل تکنیک های پیشرفته شمارش کاملترین پاورپوینت تکنیک های پیشرفته شمارش پکیج پاورپوینت تکنیک های پیشرفته شمارش مقاله تکنیک های پیشرفته شمارش تحقیق تکنیک های پیشرفته شمارش

قیمت فایل فقط 13,200 تومان

خرید

نوع فایل: پاورپوینت (قابل ویرایش)

 قسمتی از متن پاورپوینت :

تعداد اسلاید : 25 صفحه

فصل هفتم: تکنیک های پیشرفته شمارش بخش 7.1 روابط بازگشتی (Recurrence Relations) Rabbits Numbers - Leonardo Pisano 2 رابطه های بازگشتی یک رابطه بازگشتی برای دنباله {an} معادله ای است که an را بر پایه ی یک عبارت یا عبارات بیشتر قبلی دنباله a0, a1,…, an-1 ، برای همه اعداد صحیح n با شرط n≥n0 که n0 عددی صحیح و نامنفی است ، بیان می کند. یک دنباله جواب یک رابطه بازگشتی است اگر عباراتش در رابطه بازگشتی صادق باشند. رابطه های بازگشتی رابطه‌ای را بازگشتی می‌نامیم که در آن برای محاسبه هر عنصر نیاز به مقادیر تعدادی از عناصر قبلی آن داشته باشیم و براساس آنها بیان شده باشد.
نقطه مقابل رابطه بازگشتی رابطه صریح می‌باشد که در آن با دانستن شماره عنصر مستقیماً مقدار آن توسط تابع صریح آن پیدا می‌گردد.
رابطه بازگشتی را به صورت زیر می توان بیان نمود (ui عنصر iام از دنباله است) 4 مثال: مسئله برج هانوی 5 مثال: مسئله برج هانوی 6 مثال 7 به چند طریق می‌توان صفحه‌ای با اندازه (n)x2 با موزاییک‌های 2x1 فرش کرد؟ مثال 8 به چند طریق می‌توان صفحه‌ای با اندازه (n)x2 با موزاییک‌های 2x1 فرش کرد؟ مثال n سکه یکسان 50 تومانی داریم. فرض می‌کنیم xn تعداد روش‌هایی باشد که این n سکه را در دو ردیف افقی روی هم چنان مرتب کنیم که هر سکه در ردیف بالا، دقیقاً در فضای خالی دو سکه زیری قرار گرفته باشند.

برای محاسبه xn رابطه بازگشتی بدست آورید. 9 فصل هفتم: تکنیک های پیشرفته شمارش بخش 7.2 حل روابط بازگشتی خطی (Solving Linear Recurrence Relations) یک رابطه بازگشتی همگن خطی از درجه k با ضرایب ثابت، رابطه ای بازگشتی به شکل
an= c1an-1 + c2 an-2 + … + ck an-k
که c1 , c2, …,ck اعداد حقیقی و 0 ≠ ck

مثال
fn = fn-1 + fn-2 رابطه بازگشتی همگن خطی ازدرجه k Linear Homogeneous Recurrence Relation of Degree k حل رابطه های بازگشتی همگن خطی با درجه k با ضرایب ثابت فرض کنیدc1 و c2اعداد حقیقی باشند و r2 - c1r - c2 = 0 (که معادله مشخصه رابطه بازگشتی نامیده می شود) دو ریشه متمایز r1 و r2 داشته باشد. دنباله {an} ، جواب رابطه بازگشتی an= c1an-1 + c2 an-2 است اگر و فقط اگر an= α1r1n + α2 r2n برای n=0,1,2,… باشد، وقتی که α1 و α2 ثابت باشند.

معادله مشخصه (Characteristics Equation)
ریشه های مشخصه (Characteristics Roots) مثال: رابطه فیبوناچی 13 14 15 فرض کنید c1 و c2و... و ckاعداد حقیقی باشند، و فرض کنید rk - c1rk-1 -…- ck = 0 دارای k ریشه متمایز r1 و r2و...و rkباشد. دنباله {an} ، جواب رابطه بازگشتی
an= c1an-1 + c2 an-2+ … + ck an-k
است اگر و فقط اگر an= α1rn1 + α2 rn2+ … + αk rnk برای n=0,1,2,… باشد، وقتی که α1 و α2 و ... و αk ثابت باشند. 16 17


فرض کنید c1 و c2اعداد حقیقی باشند و r2 - c1r - c2 = 0 تنها یک ریشه مضاعف r0 داشته باشد. دنباله {an} ، جواب رابطه بازگشتی an= c1an-1 + c2 an-2 است اگر و فقط اگر an= α1r0n + α2 n r0n برای n=0,1,2,… باشد، وقتی که α1 و α2 ثابت باشند.
18 مثال:
an = 6an-1-9an-2
a0=1
a1=6 19 فرض کنید c1 و c2و... و ckاعداد حقیقی باشند، و فرض کنید rk - c1rk-1 -…- ck = 0 دارای k ریشه متمایز r1 و r2و...و rt با تعداد تکرارهای m1 و m2و ... و mtکه mi≥1 و k= mt+...+m2+ m1 باشد. دنباله {an} ، جواب رابطه بازگشتی
an= c1an-1 + c2 an-2+ … + ck an-k
است اگر و فقط اگر
an= (α1,0 + α1,1 n+ … + α1,m1-1 n m1-1 )rn1 +
(α2,0 + α2,1 n+ … + α2,m2-1 n m2-1 )rn2 +


توجه: متن بالا فقط قسمت کوچکی از محتوای فایل پاورپوینت بوده و بدون ظاهر گرافیکی می باشد و پس از دانلود، فایل کامل آنرا با تمامی اسلایدهای آن دریافت می کنید.

قیمت فایل فقط 13,200 تومان

خرید

برچسب ها : دانلود پاورپوینت تکنیک های پیشرفته شمارش , بررسی تکنیک های پیشرفته شمارش , پاورپوینت جامع و کامل تکنیک های پیشرفته شمارش , کاملترین پاورپوینت تکنیک های پیشرفته شمارش , پکیج پاورپوینت تکنیک های پیشرفته شمارش , مقاله تکنیک های پیشرفته شمارش , تحقیق تکنیک های پیشرفته شمارش

نظرات کاربران در مورد این کالا
تا کنون هیچ نظری درباره این کالا ثبت نگردیده است.
ارسال نظر